2,513 research outputs found

    Modelling the Dynamic Relationship between Systematic Default and Recovery Risk

    No full text
    Default correlation modelling is becoming the most popular problem in the field of credit derivatives pricing. An increase in default risk would cause the recovery rate to change correspondingly. Correlation between default and recovery rates has a noticeable effect on risk measures and credit derivatives pricing. After an introduction, we review the most recent literature covering default correlation and the relationship between default and recovery rates. We adopt the copula methodology to focus on estimating the default correlations rather than focus on modelling probabilities of default, we then use stress testing to compare the distributions of the probability of default under different copula functions. We develop a Gamma-Beta model to link the recovery rate directly with the individual probability of default, this is instead of an extended one factor model to relate them by a systematic common factor. One factor models are re-examined to explore correlated recovery rates under three distributions: the Logit-normal, the Normal and the Log-normal. By analyzing the results respectively obtained from these two classes of modelling scheme, we argue that the direct dependence (Gamma-Beta) model behaves better, in estimating the recovery rate given individual probability of default and in suggesting a better indication of their relationship. Finally, we apply default correlation and the correlated recovery rate to portfolio risk modelling. We conclude that if the recovery rates are independent stochastic variables, the expected losses in a large portfolio might be underestimated because the uncorrelated recovery risks can be diversified, so the correlation between default rate and recovery risk can not be neglected in the applications. Here, we believe the first time, the recovery rate depends on individual default probability by means of a closed formula

    Object Detection in Videos with Tubelet Proposal Networks

    Full text link
    Object detection in videos has drawn increasing attention recently with the introduction of the large-scale ImageNet VID dataset. Different from object detection in static images, temporal information in videos is vital for object detection. To fully utilize temporal information, state-of-the-art methods are based on spatiotemporal tubelets, which are essentially sequences of associated bounding boxes across time. However, the existing methods have major limitations in generating tubelets in terms of quality and efficiency. Motion-based methods are able to obtain dense tubelets efficiently, but the lengths are generally only several frames, which is not optimal for incorporating long-term temporal information. Appearance-based methods, usually involving generic object tracking, could generate long tubelets, but are usually computationally expensive. In this work, we propose a framework for object detection in videos, which consists of a novel tubelet proposal network to efficiently generate spatiotemporal proposals, and a Long Short-term Memory (LSTM) network that incorporates temporal information from tubelet proposals for achieving high object detection accuracy in videos. Experiments on the large-scale ImageNet VID dataset demonstrate the effectiveness of the proposed framework for object detection in videos.Comment: CVPR 201

    Towards Robust Aspect-based Sentiment Analysis through Non-counterfactual Augmentations

    Full text link
    While state-of-the-art NLP models have demonstrated excellent performance for aspect based sentiment analysis (ABSA), substantial evidence has been presented on their lack of robustness. This is especially manifested as significant degradation in performance when faced with out-of-distribution data. Recent solutions that rely on counterfactually augmented datasets show promising results, but they are inherently limited because of the lack of access to explicit causal structure. In this paper, we present an alternative approach that relies on non-counterfactual data augmentation. Our proposal instead relies on using noisy, cost-efficient data augmentations that preserve semantics associated with the target aspect. Our approach then relies on modelling invariances between different versions of the data to improve robustness. A comprehensive suite of experiments shows that our proposal significantly improves upon strong pre-trained baselines on both standard and robustness-specific datasets. Our approach further establishes a new state-of-the-art on the ABSA robustness benchmark and transfers well across domains.Comment: 10pages,1 figure,10 table

    Observational constraints on cosmic neutrinos and dark energy revisited

    Full text link
    Using several cosmological observations, i.e. the cosmic microwave background anisotropies (WMAP), the weak gravitational lensing (CFHTLS), the measurements of baryon acoustic oscillations (SDSS+WiggleZ), the most recent observational Hubble parameter data, the Union2.1 compilation of type Ia supernovae, and the HST prior, we impose constraints on the sum of neutrino masses (\mnu), the effective number of neutrino species (\neff) and dark energy equation of state (ww), individually and collectively. We find that a tight upper limit on \mnu can be extracted from the full data combination, if \neff and ww are fixed. However this upper bound is severely weakened if \neff and ww are allowed to vary. This result naturally raises questions on the robustness of previous strict upper bounds on \mnu, ever reported in the literature. The best-fit values from our most generalized constraint read \mnu=0.556^{+0.231}_{-0.288}\rm eV, \neff=3.839\pm0.452, and w=−1.058±0.088w=-1.058\pm0.088 at 68% confidence level, which shows a firm lower limit on total neutrino mass, favors an extra light degree of freedom, and supports the cosmological constant model. The current weak lensing data are already helpful in constraining cosmological model parameters for fixed ww. The dataset of Hubble parameter gains numerous advantages over supernovae when w=−1w=-1, particularly its illuminating power in constraining \neff. As long as ww is included as a free parameter, it is still the standardizable candles of type Ia supernovae that play the most dominant role in the parameter constraints.Comment: 39 pages, 15 figures, 7 tables, accepted to JCA
    • …
    corecore